System for the simultaneous Harman based measurement of all thermoelectric parameters from 240 K to 720 K with novel calibration procedure

D. Vasilevskiy^{1,2}, J.-M. Simard³, S. Turenne¹, R.A. Masut¹,

- 1. École Polytechnique de Montréal, C.P. 6079, Succ. Centre-ville, Montréal (Québec), H3C 3A7, Canada, <u>dvasilevskiy@polymtl.ca</u>
- 2. TEMTE Inc, 4665 West Broadway, Montreal, QC, H4B 2A7, Canada
- 3. EXAPROM Inc, 40 Saint-Ange, Blainville, QC, J7B 1X1, Canada

Topics

- 1. Introduction
- 2. ZT-Scanner and Bipolar Transient Harman Measurement
- 3. Influence of the parasitic thermal phenomena on the *ZT* and λ measurement
- 4. Novel Two Sample System Calibration (2SSC)
- 5. **ZT-Scanner** application on different TE materials
- 6. Accuracy and precision of measurement
- 7. Conclusions

ICT2014, Nashville, TN, USA

POLYTECHNIQUE

EXAPROM Inc.

TEMTE INC.

Introduction

"The inherent difficulty in thermoelectrics is that direct efficiency measurements require nearly as much complexity as building an entire device"*.

$$ZT = T\frac{\alpha^2}{\rho\lambda}$$

* G. JEFFREY SNYDER AND ERIC S. TOBERER Materials Science, California Institute of Technology, nature materials | VOL 7 | FEBRUARY 2008

ICT2014, Nashville, TN, USA

POLYTECHNIQUE

Separate measurements on different samples

± 20%

ULVAC ZEM-3

NETZSCH DSC

λ

NETZSCH FLA

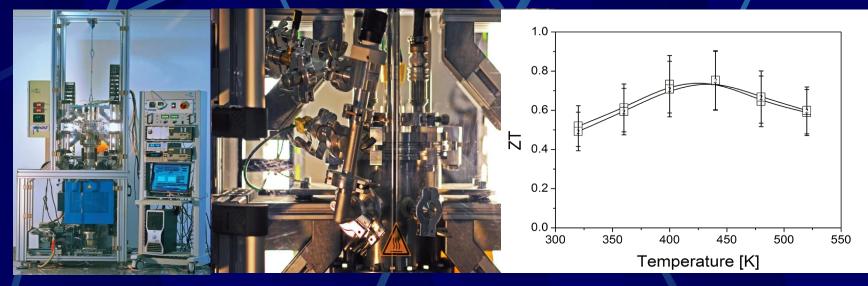
α, ρ

The uncertainty in $ZT * \int 50\%$

The uncertainty in ZT **

* G. JEFFREY SNYDER AND ERIC S. TOBERER nature materials | VOL 7 | FEBRUARY (2008)

H. WANG, W.D. PORTER, H. BOTNER, J. KÖNIG at al, *J. Electr. Mater.*, **42, 1073 (2013)


TEMTE INC.

EXAPROM Inc.

POLYTECHNIQUE

ZT-measurement on the same sample

Fraunhofer Institute for Physical Measurement Technique IPM

Measurement accuracy-

POLYTECHNIQUE

 α

 ρ

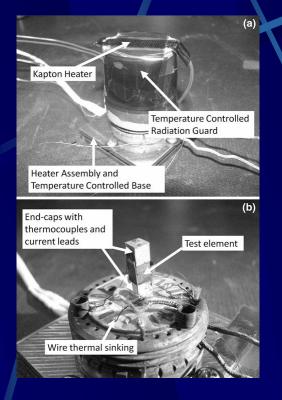
λ

ZT

 $< \pm 5\%$

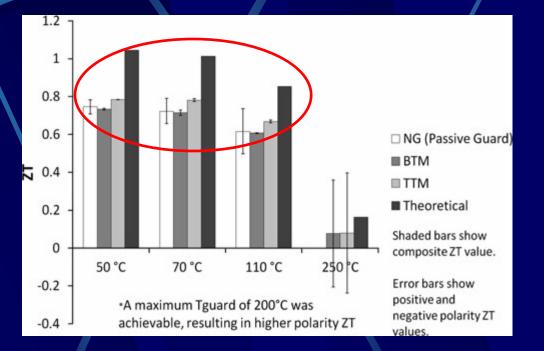
 $< \pm 10\%$

 $< \pm 10\%$


± 25%

TEMTE INC.

EXAPROM Inc.


IPM-ZT-Meter-870K

Bipolar Transient Harman Measurement

Marlow test setup

From 220 K to 525 K

R.MCCARTY, J.THOMPSON, J.SHARP, A.THOMPSON Journal of ELECTRONIC MATERIALS, Vol. 41, No. 6, (2012)

POLYTECHNIQUE

TEMTE INC.

EXAPROM Inc.

Bipolar Transient Harman Measurement

leasurement accuracy

 α

 ρ

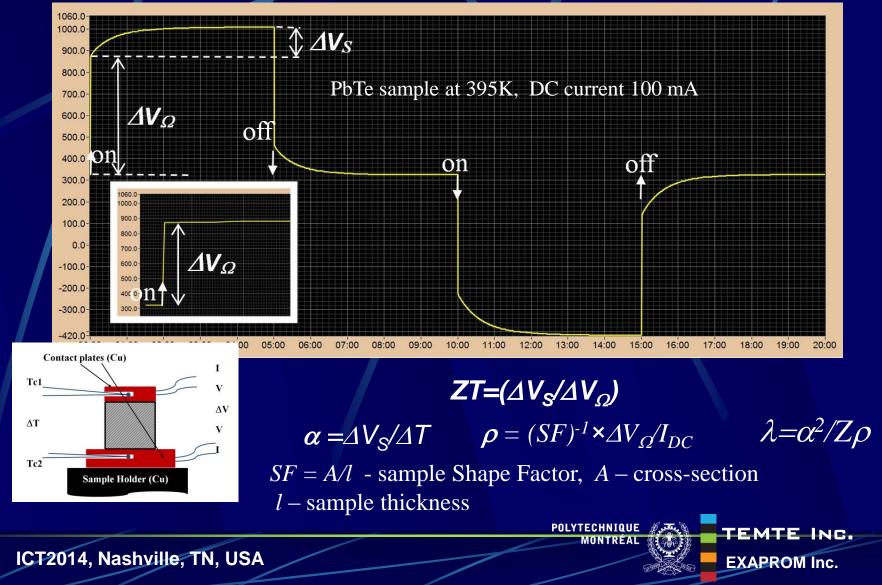
λ

ZT

ZT-Scanner by TEMTE INC.

From 240 K to 720 K

Ambitious !?

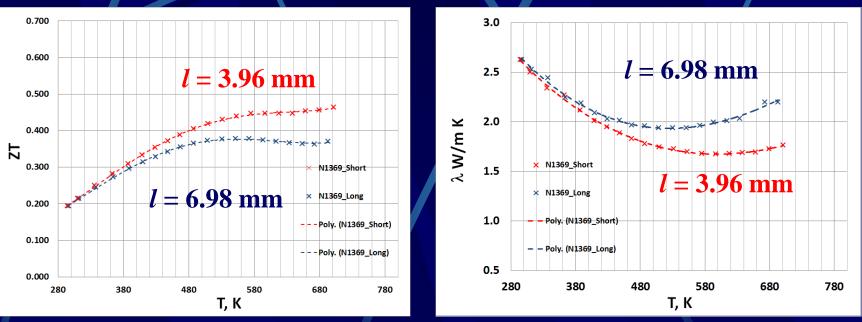

< ± 0.5%
< ± 1.0%
< ± 1.0%
< ± 1.0%
< ± 1.0%</pre>

POLYTECHNIQUE

ICT2014, Nashville, TN, USA

Bipolar Transient Harman Measurement*

* R. J. Buist, Handbook of Thermoelectrics (1995)



ZT and λ Measurements

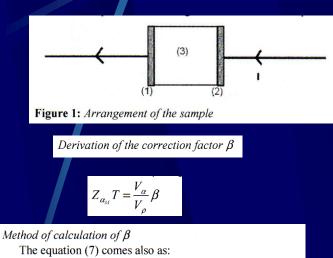
$ZT = (\Delta V_{S} / \Delta V_{\Omega})$

$\lambda = \alpha^2 / Z \cdot \rho$

PbTe Hot Extruded

Influence of parasitic thermal phenomena on ZT and λ Harman measurement. The problem is well known for almost 60 years!*

*T. C. Harman, J. Appl. Phys., 29, 1373 (1958)


POLYTECHNIQUE

Thermal Phenomena & Calibration

Theoretical Study of the Harman- Method for Evaluating the Thermoelectric Performance of Materials and Components at High Temperature

A. Jacquot, M. Jägle, J. König, D.G. Ebling, H. Böttner, ECT2007

$$Z\overline{T} \frac{V_{\rho+c}}{V_{\alpha}} = a_1 \Big[a_2 V_{\rho+c}^2 + a_3 + a_4 + a_5 \Big]$$
(12)

 a_1 represents the effect of the contact resistance.

 a_2 arises from the effect of the difference of the contact resistances.

 a_3 account for the heat losses along the feed lines.

 a_4 represents the heat radiated by the feedlines.

 a_5 represents the heat radiated by the sample.

Table 1b: Effect of the sample geometry and emissivity on β . The data used for the calculation are reported in the Table 1a.

$L_{S} \setminus \boldsymbol{\varepsilon}$	0	0,5	1
0,2 cm	$V_{\rho+c} = 9,989e-4$	$V_{\rho+c} = 1,036e-3$	$V_{\rho+c} = 1,081e-3$
	$\beta = 1,002$	$\beta = 1,049$	β =1,095
	$a_1(r_C,)=1$	$a_1(r_c,)=1$	$a_1(r_C,) = 1$
	$a_2(\Delta r_c,)=0$	$a_2(\Delta r_c,)=0$	$a_2(\Delta r_c,)=0$
	$a_3(\kappa_M,)=2e-3$	$a_3(\kappa_M,)=2e-3$	$a_3(\kappa_M,)=2e-3$
	$a_4(h_M,)=0$	$a_4(h_M,) = 4,1e-2$	$a_4(h_M,)=8,3e-2$
	$a_5(\varepsilon,)=1,000$	$a_5(\mathcal{E},) = 1,005$	$a_5(\mathcal{E},)^{=1,011}$
1 cm	$V_{\rho+c} = 9,896e-4$	$V_{\rho+c} = 1,330e-3$	$V_{\rho+c} = 1,650e-3$
	$\beta = 1,002$	$\beta = 1,347$	$\beta = 1,347$
	$a_1(r_C,) = 1$	$a_1(r_c,)=1$	$a_1(r_C,) = 1$
	$a_2(\Delta r_c,)=0$		$a_2(\Delta r_c,)=0$
	$a_3(\kappa_M,)=2e-3$	$a_{3}(\kappa_{M},)=1e-2$	$a_3(\kappa_M,)^{=1e-2}$
	$a_4(h_{M},)=0$	$a_4(h_M,) = 2.07e-1$	$a_4(h_M,) = 4,13e-1$
	$a_5(\mathcal{E},)=1,000$	$a_5(\mathcal{E},)=1,130$	$a_5(\mathcal{E},) = 1,248$
2			
2 cm	$V_{\rho+c} = 1,007e-3$	$V_{\rho+c} = 1,892e-3$	$V_{\rho+c} = 2,6770-3$
	$\beta^{=1,020}$	$\beta^{=1,915}$	$\beta = 2,710$
	$a_1(r_c,) = 1$	$a_1(r_C,)=1$	$a_1(r_C,) = 1$
	$a_2(\Delta r_c,)=0$	$a_2(\Delta r_c,)=0$	$a_2(\Delta r_c,)=0$
	$a_3(\kappa_M,)=2e-2$	$a_3(\kappa_M,)=2e-2$	$a_3(\kappa_M,)=2e-2$
	$a_4(h_M,)=0$	$a_4(h_M,)=4,13e-1$	$a_4(h_M,)=8,27e-1$

POLYTECHNIQUE

TEMTE INC. EXAPROM Inc.

Thermal Phenomena & Calibration

We accepted that it is **impossible**:

- Total practical elimination of parasitic thermal phenomena
- Precise theoretical prediction of thermal interaction between the sample and its environment

We believe that it is **possible**:

Experimental evaluation with high precision of the total impact of all parasitic phenomena for any given temperature
Compensation of its impact by proper system calibration

POLYTECHNIQUE

FXAPROM Inc.

Two Samples System Calibration (2SSC)

We introduced novel calibration procedure which we call **2SSC**

(Two Sample System Calibration)

ICT2014, Nashville, TN, USA

Two Samples System Calibration (2SSC)

Basic hypothesis

Peltier heat αTI during the Harman test generates a temperature difference ΔT across the sample which is inversely proportional to the thermal conductance of the sample K_s and the total equivalent thermal conductance K_p of all parasitic phenomena.

$$\alpha TI = \Delta T \left(K_s + K_p \right)$$

Parasitic conductance K_p is the distinctive *system* parameter which varies with temperature but is independent of the sample size and its nature

ICT2014, Nashville, TN, USA

POLYTECHNIQUE

1st step of the Two Samples System Calibration (2SSC)

For two samples of the same material and the same DC electrical current

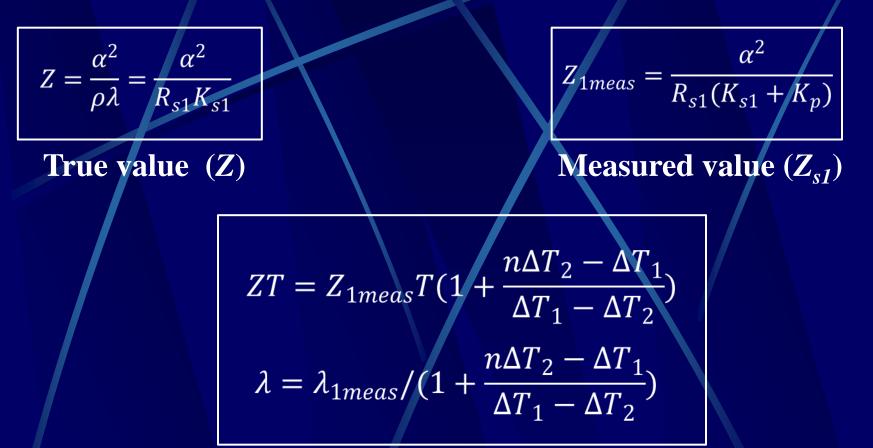
 $\begin{cases} \alpha TI = \Delta T_1 (K_{s1} + K_p) \\ \alpha TI = \Delta T_2 (K_{s2} + K_p) \end{cases}$

For
$$A_1 = A_2$$
 and $l_1 = nl_2$ $\longrightarrow nSF_1 = SF_2$
Shape factors Thermal conductances

Solving system for K_P

$$K_p = K_{s1} \frac{n\Delta T_2 - \Delta T_1}{\Delta T_1 - \Delta T_2}$$

Parasitic Thermal Conductance

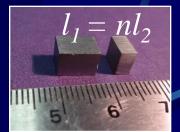

POLYTECHNIQUE

ICT2014, Nashville, TN, USA

EXAPROM Inc.

TEMTE INC.

1st step of the Two Samples System Calibration (2SSC)

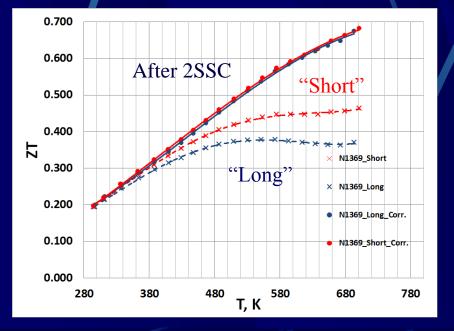

This result needs experimental validation

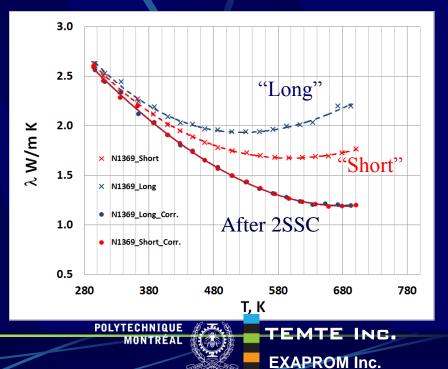
ICT2014, Nashville, TN, USA

POLYTECHNIQUE

TEMTE INC.

Experimental Validation of 2SSC




PbTe Hot Extruded *n***=1.76** "Long" - 6.98 mm "Short" - 3.96 mm

$$Z_{1meas}T(1 + \frac{n\Delta T_2 - \Delta T_1}{\Delta T_1 - \Delta T_2}) = ZT = Z_{2meas}T(1 + \frac{1}{n}\frac{n\Delta T_2 - \Delta T_1}{\Delta T_1 - \Delta T_2})$$

$$n\Delta T_2 - \Delta T_1$$

$$\lambda_{1meas}/(1+\frac{n\Delta T_2-\Delta T_1}{\Delta T_1-\Delta T_2}) = \lambda = \lambda_{2meas}/(1+\frac{1}{n}\frac{n\Delta T_2-\Delta T_1}{\Delta T_1-\Delta T_2})$$

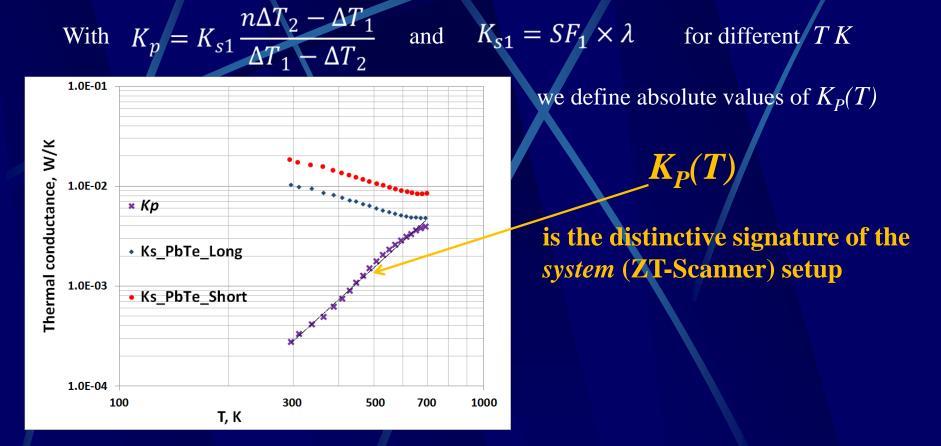
Pros & Cons

Pros.

- True ZT and λ values for an unknown material
- No need in reference sample

Cons.

- Time consuming procedure
- Potential problem for preparation of two samples with the same properties


There is another option - the 2nd step of 2SSC

ICT2014, Nashville, TN, USA

POLYTECHNIQUE

2nd step of the Two Samples System Calibration (2SSC)

We consider now the 1st sample as the Reference one with $\lambda_{Ref} \equiv \lambda$

POLYTECHNIQUE

TEMTE INC.

EXAPROM Inc.

2nd step of the Two Samples System Calibration (2SSC)

X-sample differs from the reference one not only by the shape factor, but also by its thermal conductivity with $K_X = n \frac{\lambda_X}{\lambda_{Ref}} K_{Ref}$

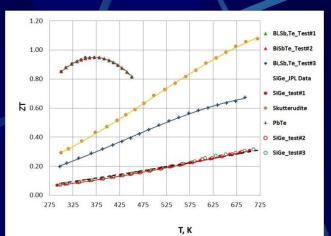
$$Z_X T = Z_{X,meas} T \left(1 + \frac{1}{n} \frac{\lambda_{Ref}}{\lambda_X} \frac{K_p}{K_{Ref}}\right)$$

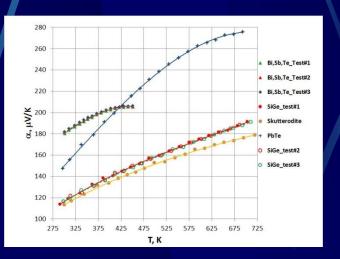
Λ_X,meas/

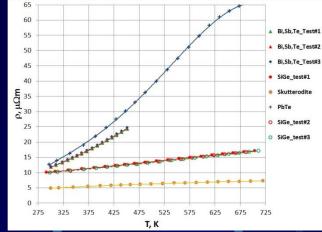
Second equation can be solved for
$$\lambda_X$$
, which then is used in the first one for true $Z_X T$ value calculation

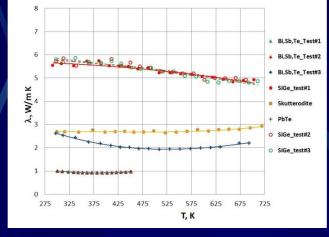
K_{Rei}

n


$$\lambda_{X} = \lambda_{X,meas} - \frac{\lambda_{Ref}}{n} \frac{K_{p}}{K_{Ref}}$$


ICT2014, Nashville, TN, USA


POLYTECHNIQUE



Application of the ZT-Scanner with the 2SSC on different TE materials

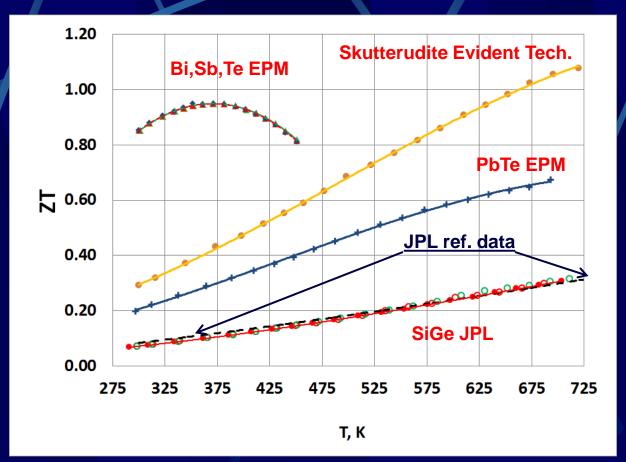
POLYTECHNIQUE

MONTRÉAL

B. The

BiSbTe - p PbTe - n

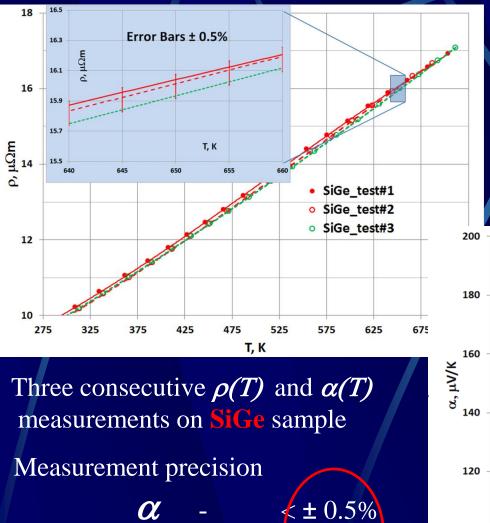
SiGe - p


Skutterudite-n

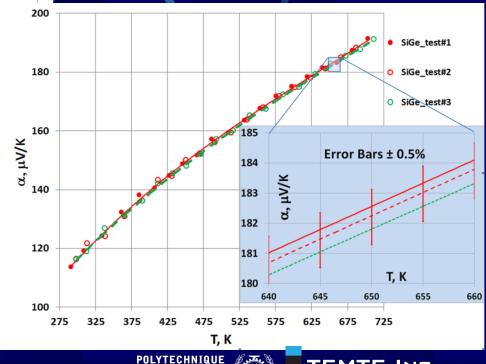
TEMTE INC.

EXAPROM Inc.

Application of the ZT-Scanner with the 2SSC on different TE materials



ICT2014, Nashville, TN, USA


POLYTECHNIQUE

Precision Of Measurement

 $< \pm 0.5\%$

Specific contact resistivity PbSn solder $R_C = 6 \times 10^{-7} \Omega \text{ cm}^2$ Silver Paste $R_C = 9 \times 10^{-7} \Omega \text{ cm}^2$

TEMTE INC.

EXAPROM Inc.

Accuracy of Measurement

			P	Accuracy
Data Acquisition	by ZT-Scanner with:			
Keithley 2401 pc	wer source			$<\pm 0.1\%$
Agilent 34420a r	ano-voltmeter	X	ΔT	$< \pm 0.2\%$
Combined error of	on sample size (5×5×	6 mm^3)	SF	$< \pm 0.6\%$
Relative overesti	mation of ρ for			
$(\rho \geq 10 \ \mu\Omega \ m$) a	nd $R_{C} = 9 \times 10^{-7} \Omega \text{ cm}^{2}$	2		< 0.5%
		$n \wedge T_{-} = \Lambda$		
Accuracy of 2SS	C is based on $K_p =$	$K_{s1} \frac{\pi \Delta T_2 - \Delta}{\Delta T}$		$< \pm 1.0\%$
		*	Γ ₂	
Ν	Aeasurement accura	icy		
	α	$< \pm 0.5\%$		
	ρ	< ± 1.0%		
	λ	< ± 1.0%		
		± 1.0%	ECHNIQUE	
ICT2014, Nashville, TN	I. USA		MONTRÉAL	EXAPROM Inc.
i i i i i i i i i i i i i i i i i i i			Canal State	LAAPROWINC.

Conclusions

- Parasitic thermal interactions is not a critical factor anymore for Harman measurements
- Its impact can be properly compensated by 2SSC procedure
- **ZT**, α , ρ and λ values can be defined with the accuracy of 1% from 240K to 720K with the ZT-Scanner
 - The problem with almost 60 years history of accurate Harman measurement is now solved

Conclusions

ZT-Scanner is available from **TEMTE ING**.

Visit us at www.temte.ca

Contact us at info@temte.ca

